

Alkylalkylidenborane $R - B = C(SiMe_3)_2$: Isolierbare Moleküle mit zweifach koordiniertem Sextett-Boratom

R. Boese^a, Peter Paetzold^{*b}, Alexander Tapper^b und Ralf Ziembinski^b

Institut für Anorganische Chemie der Universität Essen, Gesamthochschule^a, Universitätsstraße 5-7, D-4300 Essen

Institut für Anorganische Chemie der Technischen Hochschule Aachen^b, Templergraben 55, D-5100 Aachen

Eingegangen am 13. Januar 1989

Key Words: Alkylideneboranes / Boron, two-coordinated / 1,2-Oxaboretane derivatives / 1,2,4-Azadiboretidine derivatives

Die farblosen, flüssigen, pyrophoren Alkylalkylidenborane $R-B=CA_2$ (2c, d: R = Me, tBu; $A = SiMe_3$), bilden sich aus Me(MeO)B-CA₃ bzw. tBu(F)B-CA₃ durch Abspaltung von AOMe bei 560 °C bzw. von AF bei 490 °C. Bei 25 °C ist 2d lagerfähig, während sich 2c zu 5 cyclodimerisiert. In 2d, das bei 225 K kristallisiert, findet man bei 120 K ein lineares C-B=C-Gerüst mit BC-Bindungslängen von 154.7 und 136.1 pm. Mit 2,6-Dimethylpyridin bildet 2c das Addukt 6 und mit Benzophenon bzw. dem Iminoboran tBuB = NtBu die [2 + 2]-Cycloaddukte 7a und 8; 2d reagiert mit Benzophenon zu 7b.

Aminoalkylidenborane $R_2N = B = CR'_2(1)$ mit genügend sperrigen Gruppen R und R' lassen sich bei Raumtemperatur isolieren und charakterisieren¹⁻⁵: In einer Struktur vom Allen-Typ ist die BN-Bindung mit 135.3 (1a²) bzw. 136.3 pm (1b³) kürzer als die BC-Bindung mit 142.4 bzw. 139.1 pm. Weniger klar sind die Verhältnisse bei den Alkylidenorganoboranen $R - B = CR'_2(2)$. Für die erste isolierte Verbindung, für die eine Konstitution vom Typ 2 möglich ist, wurde zunächst der Strukturvorschlag 2a gemacht⁶), später wurden aufgrund theoretischer Überlegungen andere Strukturvorschläge entwickelt⁷⁻⁹), und um gewisse Reaktionen derselben Verbindung zu verstehen, wurden noch weitere Strukturmöglichkeiten diskutiert^{10,11}, so daß der

Alkylalkylideneboranes $R - B = C(SiMe_3)_2$: Isolable Molecules with a Two-Coordinated Sextet Boron Atom

The colourless, liquid, pyrophoric alkylalkylideneboranes $R-B=CA_2$ (2c, d: R = Me, tBu; $A = SiMe_3$) are formed from Me(MeO)B-CA₃ and tBu(F)B-CA₃ by elimination of AOMe at 560°C and AF at 490°C, respectively. At ambient temperature 2d can be stored, whereas 2c cyclodimerizes to form 5. 2d crystallizes at 225 K; a structure determination at 120 K reveals the C-B=C skeleton to be linear with BC bond lengths of 154.7 and 136.1 pm. The adduct 6 and the [2 + 2] cycloadducts 7a, 8 are formed from 2c and 2,6-dimethylpyridine, benzophenone, and the iminoborane tBuB \equiv NtBu, respectively. 2d gives the cycloadduct 7b with benzophenone.

Strukturvorschlag **2a** zur Zeit zumindest unsicher ist. Gut charakterisiert sind die Addukte von Basen an Alkylidenarylborane Ar $-B=CR'_2$, z. B. **2b**(thf)¹², sowie das Abfangprodukt **3b** von **2b** mit 2-Butin¹³. Interessanterweise ist auch ein Alkylidinarylborat **4** isoliert und charakterisiert worden¹⁴.

Wir beschreiben im folgenden die Darstellung und Charakterisierung der Alkylalkylidenborane $\mathbf{R} - \mathbf{B} = \mathbf{CA}_2$ (2c, d; $\mathbf{R} = \mathbf{Me}$, tBu), die Molekül- und Kristallstruktur von 2d und einige Reaktionen von 2c, d.

Darstellung von $R - B = CA_2$

Zur Darstellung von 2c gingen wir vom bekannten Boran $(MeO)_2BCA_3$ aus¹⁵⁾, das wir allerdings auf anderem Wege herstellten (s. u.). Mit Hilfe der Grignard-Reaktion gewannen wir das feste, farblose Me(MeO)BCA₃ [Gl. (1a)], aus dem sich bei 560°C Methoxytrimethylsilan abspalten ließ [Gl. (1b)]. Aus der gekühlten Vorlage konnten wir eine flüssige Mischung isolieren, die zu 80% aus 2c und zu 20% aus HCA₃ neben sehr wenig Me(MeO)BCA₃ bestand. Die Konstitution von 2c läßt sich auch in der Mischung aus ¹H-, ¹¹B- und ¹³C-NMR-Daten eindeutig herleiten. Die an der Luft pyrophore Verbindung 2c cyclodimerisiert in Toluol nach Gl. (1c) zum Diboretan 5; dabei beträgt die Halbwertszeit bei Raumtemperatur ca. 6 Stunden.

Um 2d herzustellen, alkylierten wir das Boran $tBuBF_2$ mit Hilfe von [Li(tmeda)₂][Li(CA₃)₂]^{3,16)} nach Gl. (2a). Das entstandene $tBu(F)BCA_3$ wurde dann bei 490°C in AF und

Chem. Ber. 122 (1989) 1057-1060 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1989 0009-2940/89/0606-1057 \$ 02.50/0

2d zerlegt [Gl. (2b)]. Die farblose Flüssigkeit 2d ist bei Raumtemperatur unzersetzt lagerfähig und zersetzt sich auch nicht, wenn man sie 90 Stunden auf 100°C erhitzt. An der Luft ist sie pyrophor. Ihre NMR-Daten entsprechen denen von 2c. Darüber hinaus wird die Konstitution durch eine Röntgenstrukturanalyse bestätigt.

Die antisymmetrische N = B = C-Valenzschwingung des Alkylidenaminoborans 1b wurde bei 1710 (¹¹B) bzw. 1766 cm⁻¹ (¹⁰B) gefunden³, ähnliche Werte sind für die eine BCB-Schwingung von 4 charakteristisch (1765 bzw. 1810 cm⁻¹). Für die BC-Doppelbindung von 2c, d werden kleinere Wellenzahlen erwartet und auch gefunden, nämlich 1632 bzw. 1678 cm⁻¹ (2c) sowie 1626 bzw. 1661 cm⁻¹ (2d).

Molekül- und Kristallstruktur von tBu-B=CA₂ (2d)

Die Röntgenstrukturanalyse eines bei 225 K in einer Lindemann-Kapillare gezüchteten Kristalls der Verbindung **2d** ergibt bei 120 K eine rhombische Zelle mit vier Molekülen, Raumgruppe *Pnma*. Die Atomparameter sind in Tab. 1, ausgewählte Bindungslängen und -winkel in Tab. 2 wiedergegeben. Wie Abb. 1 zeigt, besitzt das Molekül Spiegelsymmetrie; das C-B=C-Gerüst ist linear [179.6(3)°]. Die BC-Einfachbindung ist mit 154.7 pm nahezu ebenso lang wie die BC-Einfachbindung am zweifach koordinierten B-Atom

Tab. 1. Atomkoordinaten (× 10⁴) und äquivalente isotrope Temperaturfaktoren (in pm² × 0.1, definiert als ein Drittel des orthogonalisierten U_{ij} -Tensors) von **2d** (Numerierung gemäß Abb. 1)

	x	У	2	Uee
3	6006(3)	2500	4281(5)	39(1)
Sil	5927(1)	3623(1)	1952(1)	33(1)
21	6044(2)	2500	5884(3)	34(1)
22	5981(2)	2500	2870(3)	28(1)
23	4791(3)	2500	6495(4)	48(1)
24	6691(3)	3375(3)	6397(3)	65(1)
25	4571(3)	3707(2)	844(3)	60(1)
26	7221(3)	3767(2)	795(3)	57(1)
:7	5906(4)	4612(2)	3180(4)	68(1)

von 4 mit 154.3 pm. Der BC-Doppelbindungsabstand ist mit 136.1 pm deutlich kürzer als in den Alkylidenaminoboranen 1a, b mit ihren kumulierten Doppelbindungen; ein kürzerer BC-Abstand wurde mit 133.9 pm bisher nur in 4 gefunden, wo eine Bindungsordnung von 2.5 die beiden linear koordinierten Atome B und C verbindet. Erwartungsgemäß ist das Atom C(2) in 2d planar koordiniert (Winkelsumme 359.9°), und die Bindungswinkel am Atom C(1) weichen vom Tetraederwinkel kaum ab. Die vergleichsweise großen anisotropen Temperaturfaktoren des B-Atoms sind vermutlich nicht auf Fehlordnungen zurückzuführen, sondern vielmehr auf seine ungewöhnliche Sextett-Struktur; geeignete Streufaktoren stehen nicht zur Verfügung.

Tab. 2. Ausgewählte Bindungslängen [pm] und -winkel [°] von 2d

B-C1	154.7(5)	C1-B-C2	179.6(3)
B-C2	136.1(5)	C3-C1-C4	108.6(2)
C1-C3	154.2(5)	C4-C1-C4'	109.8(3)
C1-C4	154.1(4)	B-C2-Sil	118.7(1)
Sil-C2	184.5(1)	Sil-C2-Sil'	122.5(2)
Sil-C5	188.0(3)	C2-Si1-C5	110.9(1)
Sil-C6	185.9(3)	C2-Si1-C6	111.1(1)
Sil-C7	185.4(3)	C2-Sil-C7	111.6(1)
		C5-Si1-C6	107.5(2)
B-C1-C3	110.9(3)	C5-Sil-C7	107.7(2)
B-C1-C4	109.5(2)	C6-Si1-C7	107.9(2)

Abb. 1. Molekülstruktur von 2d (schwere Atome als Schwingungsellipsoide mit 50% der Aufenthaltswahrscheinlichkeit der Elektronen; indizierte und nicht indizierte Atome sind äquivalent bezüglich einer Spiegelebene)

Reaktionen von $R - B = CA_2$ (2c, d)

Das B-Atom in 2c ist durch die Methylgruppe sterisch nur wenig blockiert, so daß es dem Angriff von Basen Platz bietet. 2,6-Dimethylpyridin addiert sich nach Gl. (3) zur orangerot kristallisierenden Verbindung 6. Anders verhält sich 2d, für das wir keine bei Raumtemperatur stabilen Basen-Addukte fanden. – Beide Alkylidenborane 2c und 2d sind aber in der Lage, [2 + 2]-Cycloadditionen an der BC-Doppelbindung einzugehen. Mit Benzophenon erhielten wir mit 54 bzw. 57% Ausbeute die Oxaboretane 7a, b [Gl. (4)]. Mit dem sperrigen Iminoboran $tBuB \equiv NtBu$ reagiert 2c zum Azadiboretidin 8 [Gl. (5)]. Die Konstitution aller Produkte 6-8 ergibt sich in der üblichen Weise aus den ¹H-, ¹¹B- und ¹³C-NMR-Spektren.

Experimenteller Teil

NMR-Spektren: In CDCl₃, Bruker WP 80 (1 H), Jeol JNM PS 100 (11 B), Bruker WH 270 (13 C).

Dimethoxy[tris(trimethylsilyl)methyl]boran: Anders als Eaborn et al.¹⁵⁾ haben wir zu einer Lösung von 20.0 g (86 mmol) Tris-(trimethylsilyl)methan¹⁷⁾ in 100 ml Tetrahydrofuran (THF) bei 0°C 54 ml einer 1.6 M Lösung von Lithiummethanid in Ether gegeben. Nach 15 h Erhitzen unter Rückfluß gibt man die Reaktionslösung zu 26.8 g (258 mmol) Trimethoxyboran in 100 ml THF von -78 °C. Man erhitzt die Mischung 2 h unter Rückfluß, entfernt alles Flüchtige i. Vak. und extrahiert den Rückstand mit 200 ml Hexan. Nach Filtrieren und Entfernen von Hexan i. Vak. sublimiert man bei 50-70 °C/0.005 Torr 19.1 g (73%) farbloses Produkt, Schmp. 143 °C. - ¹H-NMR: $\delta = 0.14$ (s, 27H, SiMe₃), 3.76 (s, 6H, OMe). - ¹¹B-NMR: $\delta = 30.7$. - ¹³C-NMR (-50 °C): $\delta = 4.3$ (q, SiMe₃), 6.3 (s, BCSi₃), 52.1 (q, OMe).

Methoxymethyl[tris(trimethylsilyl)methyl]boran: Zu einer aus 15.9 g (112 mmol) Iodmethan und 2.7 g (111 mmol) Magnesium in 50 ml Ether bereiteten Grignard-Lösung gibt man 15.6 g (51.2 mmol) Dimethoxy[tris(trimethylsilyl)methyl]boran in 50 ml Ether. Nach 2 d Erhitzen unter Rückfluß zersetzt man überschüssiges Grignard-Reagenz mit 20 ml Methanol, filtriert, engt ein und sublimiert bei 35–50°C/0.005 Torr 8.8 g (60%) farbloses Produkt. – ¹H-NMR: δ = 0.13 (s, 27 H, SiMe₃), 0.45 (s, 3 H, BMe), 3.58 (s, 3 H, OMe). – ¹¹B-NMR: δ = 52.8. – ¹³C-NMR (-30°C): δ = 4.5 (q, SiMe₃), 6.8 (q, BMe), 15.4 (s, BCSi₃), 52.3 (q, OMe).

[Bis(trimethylsilyl)methylen]methylboran (2c): 2.12 g (7.35 mmol) MeO(Me)BC(SiMe₃)₃ werden im Verlauf von 2 h in ein auf 560 °C geheiztes Thermolyserohr bekannter Bauart¹⁸ sublimiert. Die Thermolyseprodukte kondensieren bei -198 °C an einem Kühlfinger, an dem vorab 5 ml Pentan kondensiert worden waren. Nach Entfernen des Kühlmittels tropfen die kondensierten Stoffe in einen Kolben, aus dem man bei -40 °C Methoxytrimethylsilan und Pentan i. Vak. entfernt. Die zurückbleibende Mischung läßt sich bei 25 °C/0.001 Torr umkondensieren, aber nicht auftrennen. Die NMR-Spektren zeigen, daß die erhaltenen 1.23 g zu 80% aus 2c (Ausb. 73%) und zu 20% aus Tris(trimethylsilyl)methan bestehen. Im folgenden werden nur die NMR-Signale von 2c ohne die

uns bekannten Signale des Nebenprodukts genannt. – ¹H-NMR ([D₈]Toluol): $\delta = 0.09$ (s, 18H, SiMe₃), 0.41 (s, 3H, BMe). – ¹¹B-NMR: $\delta = 69.5$. – ¹³C-NMR (-60°C): $\delta = -2.6$ (q, BMe), 3.7 (q, SiMe₃), 52.7 (s, B=C).

1,3-Dimethyl-2,2,4,4-tetrakis(trimethylsilyl)-1,3-diboretan (5): Eine Lösung von 1.50 g der Mischung von 2c und HC(SiMe₃)₃ (6.5 mmol 2c) in 5 ml siedendem Pentan wird 15 h erhitzt. Bei $-80 \,^{\circ}\text{C}$ erhält man aus Pentan 1.13 g (94%) farbloses 5, Schmp. 169 $\,^{\circ}\text{C}$. $-^{1}\text{H-NMR}$: $\delta = 0.13$ (s, 36H, SiMe₃), 1.00 (s, 6H, BMe). $-^{11}\text{B-NMR}$: $\delta = 84.4$. $-^{13}\text{C-NMR}$ ([D₈]Toluol, $-30\,^{\circ}\text{C}$): $\delta = 4.2$ (q, SiMe₃), 1.58 (q, BMe), 46.8 (s, BCSi₂).

tert-Butylfluor[tris(trimethylsilyl)methyl]boran: Eine Lösung von 21.9 g (158 mmol) tert-Butyldichlorboran¹⁹⁾ gibt man bei 0 °C zu einer Suspension von 49.0 g (474 mmol) ZnF₂ in 150 ml Toluol. Nach kurzem Rühren bei Raumtemp. kondensiert man 8.8 g (53%) tert-Butyldifluorboran i. Vak. ab. – ¹H-NMR: δ = 1.01 (s, tBu). – ¹¹B-NMR: δ = 29.0. – Diese 8.8 g (83.1 mmol) des Zwischenprodukts tBuBF₂ erhitzt man zusammen mit 14.5 g (20.4 mmol) [Li(tmeda)₂][Li(CA₃)₂]^{3,16)} in 100 ml Hexan 3 d unter Rückfluß, filtriert, entfernt das Lösungsmittel i. Vak. und sublimiert bei 50–60°C/0.005 Torr 10.2 g (78%) farbloses Produkt, Schmp. 194°C. – ¹H-NMR: δ = 0.24 (d, J_{HF} = 1.3 Hz, 27H, SiMe₃), 0.98 (d, J_{HF} = 1.9 Hz, 9H, tBu). – ¹¹B-NMR (60°C): δ = 56.8 (d, J_{BF} = 121 Hz). – ¹³C-NMR (-30°C): δ = 5.4 (q, SiMe₃), 16.9, 25.4 (2 s, BCSi₃ bzw. Me₃CB), 27.0 (dq, J_{CF} = 5.0 Hz, Me von tBu).

[Bis(trimethylsily])methylen]-tert-butylboran (2d) wird in der selben Weise wie 2c gewonnen, indem man hier von 5.41 g (17.0 mmol) tBu(F)B-CA₃ ausgeht und die Pyrolyse bei 490 °C vornimmt. Das Produkt Fluortrimethylsilan sowie Pentan werden bei -40 °C i. Vak. entfernt, dann wird von Resten unumgesetzten Edukts tBu(F)B-CA₃ abkondensiert, und schließlich destilliert man bei Sdp. 58 °C/3 Torr 2.08 g (54%) 2d. - ¹H-NMR (C₆D₆): $\delta = 0.23$ (s, 18H, SiMe₃), 0.96 (s, 9H, tBu). - ¹¹B-NMR (C₆D₆): $\delta = 70.0$. - ¹³C-NMR ([D₈]Toluol, -70 °C): $\delta = 4.2$ (q, SiMe₃), 19.2 (s, CMe₃), 26.9 (q, Me von tBu), 49.9 (s, BCSi₂).

Röntgenstrukturanalyse von 2d: Ein Einkristall wurde bei 225 K in einer Kapillare von 0.3 mm Durchmesser nach einem Miniatur-Zonenschmelzverfahren mit fokussierter Infrarotstrahlung gewonnen^{20]}. Zelldimensionen bei 120 K: a = 1137.0(1), b = 1441.3(2), c = 964.8(1) pm, $\alpha = \beta = \gamma = 90^{\circ}$, $V = 1.5809(3) \cdot 10^{9}$ pm³, rhombisch, Raumgruppe *Pnma*, $\rho_{ber.} = 0.951$ g/cm³, $\mu = 0.19$ mm⁻¹, Z = 4. Nicolet-R3m/V-Röntgenvierkreisdiffraktometer, Mo- K_{α} -Strahlung. 1621 unabhängige Reflexe, davon 1271 beobachtet [$F_{o} \ge 4\sigma(F)$], $3^{\circ} \le 2\Theta \le 55^{\circ}$; Strukturlösung mit Direkten Methoden mit SHEXTL-PLUS, die Wasserstoffatome wurden als starre Kugeln in die Verfeinerung einbezogen, R = 0.047, $R_w = 0.056$, $w^{-1} = \sigma^2(F_o) + 0.0025 F_o^2$, maximale Restelektronendichte $0.36 e/Å^{3 21}$.

2,6-Dimethylpyridin – [Bis(trimethylsilyl)methylen]methylboran (6): Zu 0.81 g der Mischung von 2c und HC(SiMe₃), (3.5 mmol 2c) in 5 ml Pentan gibt man bei – 78 °C 0.60 g (5.6 mmol) 2,6-Dimethylpyridin. Man entfernt alles Flüchtige i. Vak. nimmt wieder in Pentan auf und erhält bei – 80 °C 0.98 g (96%) 6. – ¹H-NMR (C₆D₆): δ = –0.06 und 0.53 (2 s, 9H, SiMe₃ I und II), 0.65 (s, 3H, BMe), 2.43 (s, 6H, o-Me), 6.20–6.77 (3H, m-H, p-H). – ¹¹B-NMR (C₆D₆): δ = 40.1. – ¹³C-NMR ([D₈]Toluol, –30 °C): δ = 4.2 und 6.0 (2 q, SiMe₃ I und II), 9.0 (q, BMe), 22.1 (q, o-Me), 71.0 (breit, BCSi₂), 124.0 (d, m-C), 138.9 (d, p-C), 153.9 (s, o-C).

C₁₅H₃₀BNSi₂ (291.4) Ber. C 61.83 H 10.38 N 4.81 Gef. C 61.46 H 10.44 N 4.60

2-Methyl-4,4-diphenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (7a): 1.01 g der Mischung aus 2c und HC(SiMe₃)₃ (4.4 mmol 2c) sowie 0.93 g (5.1 mmol) Benzophenon in 15 ml Pentan werden 15 h bei Raumtemp. gerührt. Nach Einengen zur Trockne kristallisiert man zweimal bei - 80°C aus Ether und erhält 0.87 g (54%) 7a, Schmp. 102° C. - ¹H-NMR: $\delta = -0.01$ (s, 18H, SiMe₃), 0.83 (s, 3H, BMe), 7.28 - 7.75 (10 H, Ph). $-^{11}$ B-NMR: $\delta = 58.7. -^{13}$ C-NMR $(-30 \degree C)$: $\delta = 3.0$ (q, SiMe₃), 5.3 (q, BMe), 45.6 (s, BCSi₂), 93.3 (s, CO), 125.0, 126.8, 127.8 (3 d, Ph), 145.9 (s, Ph).

> C₂₁H₃₁BOSi₂ (366.5) Ber. C 68.83 H 8.53 Gef. C 68.53 H 8.86

2-tert-Butyl-4,4-diphenyl-3,3-bis(trimethylsilyl)-1,2-oxaboretan (7b): Nachdem man 1.10 g (4.9 mmol) 2d und 0.89 g (4.9 mmol) Benzophenon in 15 ml Pentan 15 h bei Raumtemp, gerührt hat, entfernt man Pentan i. Vak., kristallisiert zweimal bei -80°C aus Ether und erhält 1.13 g (57%) 7b, Schmp. 172°C. - ¹H-NMR: $\delta =$ -0.06 (s, 18 H, SiMe₃), 1.21 (s, 9 H, tBu), 7.22 - 7.70 (10 H, Ph). -¹¹B-NMR: $\delta = 60.0. - {}^{13}$ C-NMR (-30°C): $\delta = 3.8$ (q, SiMe₃), 22.3 (s, CMe₃), 27.4 (q, Me von tBu), 45.7 (s, BCSi₂), 91.2 (s, CO), 125.3, 126.8, 127.6 (3 d, Ph), 145.6 (s, Ph).

> C₂₄H₃₇BOSi₂ (408.5) Ber. C 70.56 H 9.13 Gef. C 70.63 H 9.49

1,2-Di-tert-butyl-4-methyl-3,3-bis(trimethylsilyl)-1,2,4-azadiboretidin (8): 1.27 g der Mischung aus 2c und HC(SiMe₃)₃ (5.5 mmol 2c) sowie 0.77 g (5.5 mmol) tert-Butyl(tert-butylimino)boran²²⁾ in 5 ml Pentan werden bei $-78\,^\circ\mathrm{C}$ 15 h gerührt. Man entfernt das Lösungsmittel bei Raumtemp. i. Vak. und sublimiert 1.44 (81%) 8, Schmp. 161 °C. - ¹H-NMR (C₆D₆): $\delta = 0.19$ (s, 18 H, SiMe₃), 0.76 (s, 3H, BMe), 1.13 (s, 9H, BtBu), 1.22 (s, 9H, NtBu). - ¹¹B-NMR (C_6D_6) : $\delta = 53.6. - {}^{13}C-NMR$ ([D₈]Toluol, $-30^{\circ}C$): $\delta = 3.5$ (q, SiMe₃), 7.6 (q, BMe), 22.4 (s, BCMe₃, 23.1 (s, B₂CSi₂), 29.5 (q, Me von BtBu), 32.3 (q, Me von NtBu), 52.6 (NCMe₃).

C₁₆H₃₉B₂NSi₂ (323.3) Ber. C 59.44 H 12.16 N 4.33 Gef. C 58.91 H 12.17 N 4.11

CAS-Registry-Nummern

2c: 119366-57-3 / 2d: 119366-61-9 / 5: 119366-58-4 / 6: 119366-65-3 / 7a: 119366-62-0 / 7b: 119366-63-1 / 8: 119366-64-2 / tBuBF₂: $119366-59-5 / [Li(tmeda)_2] \{ Li[C(SiMe_3)_3]_2 \}: 107743-82-8 / tBu(F)BC-$ (SiMe₃)₃: 119366-60-8 / (MeO)₂BC(SiMe₃)₃: 87122-54-1 / Me(MeO)- $BC(SiMe_3)_3$: 119366-56-2 / $tBuB \equiv NtBu$: 89786-99-2 / $HC(SiMe_3)_3$: 1068-69-5 / tert-Butyldichlorboran: 76873-78-4 / 2,6-Dimethylpyridin: 108-48-5 / Benzophenon: 119-61-9 / Trimethoxyboran: 121-43-7

- ¹⁾ B. Glaser, H. Nöth, Angew. Chem. 97 (1985) 424; Angew. Chem. Int. Ed. Engl. 24 (1985) 416.
- ²⁾ B. Glaser, E. Hanecker, H. Nöth, H. Wagner, Chem. Ber. 120 (1987) 659.
- ³⁾ R. Boese, P. Paetzold, A. Tapper, *Chem. Ber.* **120** (1987) 1069. ⁴⁾ B. Glaser, E. P. Mayer, H. Nöth, W. Rattay, U. Wietelmann, Z. Naturforsch., Teil B, 43 (1988) 449.
- ⁵⁾ A. Tapper, T. Schmitz, P. Paetzold, Chem. Ber. 122 (1989) 595.
- 6) H. Klusik, A. Berndt, Angew. Chem. 95 (1983) 895; Angew. Chem. Int. Ed. Engl. 22 (1983) 877.
- ⁷⁾ P. H. M. Budzelaar, P. von R. Schleyer, W. Krogh-Jespersen, Angew. Chem. 96 (1984) 809; Angew. Chem. Int. Ed. Engl. 23 (1984) 825.
- ⁸⁾ G. Frenking, H. F. Schaefer III, Chem. Phys. Lett. 109 (1984) 521
- 9) P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P. von R. Schleyer, J. Am. Chem. Soc. 107 (1985) 2773.
- ¹⁰⁾ H. Meyer, G. Baum, W. Massa, S. Berger, A. Berndt, Angew. Chem. 99 (1987) 559; Angew. Chem. Int. Ed. Engl. 26 (1987) 546. ¹¹⁾ H. Meyer, G. Baum, W. Massa, A. Berndt, Angew. Chem. 99
- (1987) 790; Angew. Chem. Int. Ed. Engl. 26 (1987) 789
- ¹²⁾ H. Lukasch, G. Schmidt-Lukasch, U. Lippold, A. Berndt, Angew. Chem. 100 (1988) 959; Angew. Chem. Int. Ed. Engl. 27 (1988) 960.
- ¹³⁾ C. Pues, G. Baum, W. Massa, A. Berndt, Z. Naturforsch., Teil B, 43 (1988) 275.
- ¹⁴⁾ R. Hunold, J. Allwohn, G. Baum, W. Massa, A. Berndt, Angew. Chem. 100 (1988) 961; Angew. Chem. Int. Ed. Engl. 27 (1988) 961.
- ¹⁵⁾ C. Eaborn, M. N. El-Kheli, N. Retta, J. D. Smith, J. Organomet. Chem. 249 (1983) 23.
- ¹⁶ C. Eaborn, P. B. Hitchcock, J. D. Smith, A. C. Sullivan, J. Or-
- ganomet. Chem. 263 (1984) C23.
- ¹⁷⁾ R. L. Merker, M. J. Scott, J. Organomet. Chem. 4 (1965) 98. ¹⁸⁾ P. Paetzold, A. Richter, T. Thijssen, S. Würtenberg, Chem. Ber.
- 112 (1979) 3811.
- ¹⁹⁾ P. A. McCusker, E. C. Ashby, H. S. Makowski, J. Am. Chem. Soc. 79 (1957) 5182
- ²⁰⁾ D. Brodalla, D. Mootz, R. Boese, W. Oßwald, J. Appl. Crystalloar. 18 (1985) 316.
- ²¹⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53625, der Autoren und des Zeitschriftenzitats angefordert werden.
- ²²⁾ P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, R. Pfeiffer, R. Gleiter, W. Schäfer, Chem. Ber. 147 (1984) 1954.

[7/89]